US 2017/0102929 Al

Iutional encoder (used in transmitter path) and a Viterbi
decoder (used in receive path). Interleaving may be done for
the data, which helps in spreading the error over time,
thereby helping the receiver de-interleave and decode the
frame correctly.

[0041] REF circuitry block 340 includes an RF up-converter
and an RF down-converter. For a GSM system, the RF
up-converter converts modulated baseband signals (I and Q)
either at zero intermediate frequency (IF) or some IF to RF
frequency (890-915 MHz). The RF down-converter converts
RF signals (935 to 960 MHz) to baseband signals (I and Q).
For a GSM system, GMSK modulation is used.

[0042] Antenna 395 is a metallic object that converts and
electro-magnetic signal to and electric signal and vice versa.
Commonly used antennas may include a helix type, a planar
inverted F-type, a whip, or a patch type. Microstrip patch
type antennas are popular among mobile phones due to
small size, easy integration on a printed circuit board and
multi-frequency band of operation. In a preferred embodi-
ment of mobile phone 121, antenna 395 may support dif-
ferent wire-area standards, including GSM, CDMA, LTE,
and WiMAX, as well as short-range standards, including
WiFi (WLAN), Bluetooth, and so on.

[0043] Ifantenna 395 comprises only one antenna used for
both transmit and receive operations at different times, the
TX/RX switch 345 couples both the transmit (TX) path and
the receive (RX) path to antenna 395 at different times.
TX/RX switch 345 is controlled automatically by DSP 320
based on a GSM frame structure with respect to the physical
slot allocated for that particular GSM mobile phone in both
the downlink and the uplink. For frequency division duplex-
ing (FDD) systems, TX/RX switch 345 may be implement
as a diplexer that acts as filter to separate various frequency
bands.

[0044] FIG. 4 illustrates the operation of Android™ pack-
age manager 400 in exemplary mobile phone 121 according
to embodiments of the disclosure. In mobile phone 121,
Android™ package manager 400 manages all applications.
Android™ package manager 400 includes package opti-
mizer function 420 that receives original Android™ APK
application package 410, which has a .apk extension and
generates therefrom an optimized Android™ APK applica-
tion package 430, which has the same name and a .apk
extension. The applications handled by Android™ package
manager 400 include preloaded system applications and
update applications from Android Market™. Packages.xml
file 450 is an XML file that contains information about
installed packages and is managed by Android™ package
manager 400. Package manager install function 400 installs
the optimized APK application package 440 and stores
information about installed packages in packages.xml file
450.

[0045] Android™ package manager 400 parses and edits
preloaded system applications and update applications in a
way that reduces file size by removing unnecessary resource
without affecting the functionality of the application in the
target device. Android™ package manager 400 eliminates
duplicate and unused resources, while still enabling appli-
cations to be updated through, for example, Google Play™
Store. After unnecessary resources are identified and
removed, Android™ package manager 400 re-packages the
modified and optimized APK application package with a
different signature or certificate because the original signing
key (private key) is not available. However, Android™

Apr. 13,2017

package manager 400 ensures that the optimized APK
package with a different signature will still update through
Google Play™ Store. Special key/retrieved key table 460
stores a mapping between the original certificates/keys and
the newly generated certificates/keys generated from the
optimized APK application package.

[0046] FIG. 5 is a flow diagram illustrating the operation
of package optimizer function 420 in reducing APK package
resources and size according to the principles of the present
disclosure. Initially, Android™ package manager 400 adds a
package to the queue for the installation process and deter-
mine the appropriate location, if needed, and determines the
type of installation (i.e., install or update). Android™ pack-
age manager 400 may query package-related information to
from packages.xml file 450, which may have an original
package.

[0047] To optimize an original APK application package,
Android™ package manager 400 executes package opti-
mizer function 420. Package optimizer function 420 initially
unzips a new or a preloaded .apk package (step 510). Next,
package optimizer function 420 parses certificate-related
information from the META-INF folder and then deletes the
META-INF folder (step 520). Package optimizer function
420 then scans the RES (resource) folder and analyzes the
resource files and elements based on selected target device
parameters (e.g., DPI, MCC, MNC, etc.) (step 530). Package
optimizer function 420 deletes unnecessary resources from
the RES folder based on a pre-determined policy configu-
ration (step 540). The policy governs which resources
should remain, considering the fact that only certain
resources will be used on the target mobile device 121. By
way of example, package optimizer function 420 handles
graphic assets efficiently because the graphic assets are
related to device DPI and the DPI information does not
change. Carrier information, such as MCC and MNC, and
some layout .xml data with device DPI also may be con-
sidered as unchanged values. Therefore, package optimizer
function 420 may safely remove these resource if, for
example, device DPI or carrier information is known.

[0048] After the unnecessary resources files and other
elements have been removed, package optimizer function
420 zips all of the remaining data into an optimized APK
application package having the same name as the original
APK application package 410 and the .apk extension (step
550). Package optimizer function 420 then signs the opti-
mized APK application package 430 with a special key (step
560). The special key is intended to distinguish from other
regular applications. With the special key, mobile phone 121
can determine if the APK application package uses the
Reduce Storage Usage tool or not. Package manager install
function 440 may then install the optimized APK application
package 430 and reflect the installation information on
packages.xml file 450 along with certificate-related infor-
mation from the META-INF retrieved from the original
APK package 410. Package optimizer function 420 creates
a mapping table in special key/retrieved key table 460
between the original certificates and the newly created
certificates (step 570). The mapping information is used to
get updates from Android Market™, since Android Mar-
ket™ only has the original certificate information.

[0049] Although the present disclosure has been described
with an exemplary embodiment, various changes and modi-
fications may be suggested to one skilled in the art. It is



